
SANDIA REPORT
SAND2018-9199
Unlimited Release
Printed August 21, 2018

Opal: A Centralized Memory Manager for
Investigating Disaggregated Memory
Systems

V.R. Kommareddy and A. Awad
Secure and Advanced Computer Architecture Research Group
University of Central Florida
Orlando, FL 32816
vamseereddy8@Knights.ucf.edu, amro.awad@ucf.edu

C. Hughes and S.D. Hammond
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM 87185
{chughes, sdhammo}@sandia.gov

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E
P
A

R
T
M
ENTOFEN

E
R
G
Y

• •U
N
I
T
E
D

STATES OF
A
M

E
R
I
C
A

2

SAND2018-9199
Unlimited Release

Printed August 21, 2018

Opal: A Centralized Memory Manager for Investigating
Disaggregated Memory Systems

V.R. Kommareddy1, C. Hughes2, S. Hammond2, and A. Awad1

1SACA Research Group, University of Central Florida, Orlando, FL 32816
2Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185

Abstract

Many modern applications have memory footprints that are increasingly large, driving system
memory capacities higher and higher. Moreover, these systems are often organized where the bulk
of the memory is collocated with the compute capability, which necessitates the need for message
passing APIs to facilitate information sharing between compute nodes. Due to the diversity of
applications that must run on High-Performance Computing (HPC) systems, the memory utiliza-
tion can fluctuate wildly from one application to another. And, because memory is located in the
node, maintenance can become problematic because each node must be taken offline and upgraded
individually.

To address these issues, vendors are exploring disaggregated, memory-centric, systems. In this
type of organization, there are discrete nodes,reserved solely for memory, which are shared across
many compute nodes. Due to their capacity, low-power, and non-volatility, Non-Volatile Memories
(NVMs) are ideal candidates for these memory nodes. This report discusses a new component for
the Structural Simulation Toolkit (SST), Opal, that can be used to study the impact of using NVMs
in a disaggregated system in terms of performance, security, and memory management.

3

This page intentionally left blank.

Contents

1 Introduction 7

2 Opal Component 9

Integrating Opal in Simulated Systems . 12

Opal Configuration . 14

Example Opal Configuration . 14

Opal Requests . 16

Memory Allocation Policies . 17

Communication Between Nodes . 17

3 Evaluation 19

4 Conclusion 23

References 24

5

List of Figures

1.1 An example of a disaggregated memory system. The system has several nodes
(SoCs) where each node may have its own internal memory but share external
memory. 7

2.1 A simulated system that uses Opal for centralized memory management. 10

2.2 Implementing access control for direct access scheme. 11

2.3 Implementing access control for virtualized system memory. 12

2.4 Example configuration . 16

3.1 Disaggregated memory system performance in instructions per cycle for different
memory allocation policies by varying number of nodes and number of shared
memory pools . 20

3.2 Comparing performance of disaggregated memory system by varying different
memory allocation policies . 21

6

Chapter 1

Introduction

With the arrival of the big data era, the need for fast processing and access to shared memory
structures has never been as crucial as it is today. For better reliability, upgradability and flexibility,
major vendors are considering designs that have disaggregated memory systems, which can be
accessed by a large number of processing nodes. The fact that such systems are disaggregated
allows upgrading memory, isolating malicious or unreliable nodes, and enables easy integration of
heterogeneous compute nodes (e.g. GPUs, FPGAs, and custom accelerators). To better understand
how a disaggregated memory system is organized,please refer to Figure 1.1, which depicts a sample
disaggregated memory system.

Node 0 Node 1 Node 2 Node 3

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Router Router Router Router

NVM

External Shared Memory

NVM NVM

Very fast interconnect (e.g.,
GenZ-based, CCIX-based)

Fast but power-consuming
memory (e.g., DRAM)

External World
Link

Dense, power-efficient and
persistent memory

Figure 1.1: An example of a disaggregated memory system. The sys-
tem has several nodes (SoCs) where each node may have its own internal
memory but share external memory.

As shown in Figure 1.1, the nodes must access an off-chip network to access the external
memory. Although local updates to external memory locations can be made visible to all other
nodes, scaling the coherence protocol is challenging. While using directories could help, there
are still inherent design and performance complexities that can arise. One direction that vendors
are considering is the use of software to flush updates in local caches to the shared memory and

7

make it visible to other nodes. One can think of it as having a lock around the shared data, and
not releasing it until all of the updates have been flushed to the external memory. Once the lock
is released, the other nodes need to make sure they are reading the data from the external memory
rather than their internal caches. One way to do that is to use clflush after any reads or updates,
which guarantees copies of that memory location are invalidated in the cache hierarchy. Other use
cases include partitioning the memory carefully between nodes, where each node signals all of its
updates and flushes. After which, an aggregator node can read the updated values from the external
memory. In much simpler cases, such as a file containing a large social network graph where no
updates are expected to that graph (read-only), there is no need for special handling of accesses to
the graph.

The Structural Simulation Toolkit (SST) [6] has been proven to be one of the most reliable
simulators for large-scale systems due to the scalability and modular design of its components.
This makes SST the perfect candidate for simulating disaggregated memory systems at scale. One
of the current limitations of SST is the lack of a centralized memory management entity that
can correctly model page faults and requests for physical frames from the simulated machine.
Such a limitation becomes more relevant when there are a large number of shared resources (e.g.
memory pools). To address this problem and to facilitate research efforts in disaggregated memory
systems, a centralized memory management entity is proposed that can be used to investigate
allocation policies, page placement, page migration [5], the impact of TLB shootdown [7, 1, 3],
and other important aspects that are related to managing disaggregated memory systems. This
report describes Opal, a centralized memory management entity, and shows its efficacy using case
studies that can leverage the component.

8

Chapter 2

Opal Component

Opal can be thought of as the Operating System (OS) memory manager, and in the case of
a disaggregated memory system, the system memory allocator/manager. In conventional systems
with single level memory, once a process tries to access a virtual address, a translation is triggered
to map the virtual address to a physical address. If a translation is not found, and the hardware
realizes that either there is no mapping to that virtual address or the access permissions would
be violated, it triggers a page fault that is handled by the OS. The page fault handler maps the
virtual page to a physical page that is chosen from a list of free frames (physical pages). Once
a physical page is selected, its address is inserted in the page table along with the corresponding
access permissions. Later, any accesses to that virtual address will result in a translation process
that concludes with obtaining the physical address of the selected page. Since SST aims for fast
simulation of HPC systems, it does not model the OS aspects of this sequence of events. However,
the memory allocation process will have a major impact on performance for heterogeneous mem-
ory systems and disaggregated memory simply because of the many allocation policies that an OS
can select from. Moreover, allocation policies are not well understood on disaggregated memory
systems, making it important to investigate them to discover the best algorithm or heuristics to
be employed for both performance and energy efficiency. To this end, Opal is proposed to facil-
itate fast investigation and exploration of allocation policies in heterogeneous and disaggregated
memory systems.

As shown in Figure 2.1, the Opal component should be connected to the processing elements
in SST and the hardware MMU unit. The main reason to be connected to processing elements is
to pass allocation hints. For instance, if a process calls malloc or mmap with hints to whether the
physical frames should be allocated from local or remote memory, these hints should be recorded
by Opal. While these calls do not immediately allocate physical pages, when a page is mapped,
Opal can use the hints to decide where to allocate the physical page. Similarly, the hardware MMU
unit should have links to Opal, so once a TLB miss and page table walk conclude with a page fault
(unmapped virtual address), Opal will be sent a request for physical frame allocation, which will
be eventually mapped to the corresponding faulting virtual address.

Before diving into the details of Opal, it is useful to understand the different ways a disaggre-
gated memory systems can be managed.

• Exposing External Memory Directly to Local Nodes
In this approach a local node OS (or Virtual Machine) sees both the local memory and exter-

9

Figure 2.1: A simulated system that uses Opal for centralized memory management.

nal memory. However, it needs to request physical frames from a central memory manager
to be able to access external memory. To enforce access permissions and to achieve isolation
between data belongs to different nodes/users, the system must provide a mechanism to val-
idate the mappings and the validity of physical addresses being accessed by each node. To
better understand the challenges of this scheme, refer to Figure 2.2, which depicts different
options to implement access control on shared resources when external memory is directly
exposed to local nodes.

In the Figure 2.2, Option 1 would be to check if the requesting node is eligible to access the
requested address at the memory module level. This implementation requires a bookkeeping
mechanism at the memory module level (or in the memory blade) to check the permission of
every access. If the request is valid, it is forwarded to the memory device, otherwise either
random data is returned or an error packet (access violation) is returned to the requesting
core. Since the external memory is shared between nodes, the system memory manager must
have a consistent view of allocated pages and their owning nodes. One way to implement
requesting external memory is through a device driver (part of local nodes’ OS) that can
be used to communicate (either through the network or predefined memory regions) with
the external memory manager. Option 2 is similar but instead of relegating the permission
check to the memory module, the router will have a mechanism to check if the accessed
physical addresses are granted to the requesting node. Finally, in Option 3 , an additional
bump-on-the-wire (ASIC or FPGA) can be added by the system integrator to check for the

10

Figure 2.2: Implementing access control for direct access scheme.

permissions of the requests coming out from each node. In all options, nodes will not be
able to have direct access to the permission tables; only the system memory manager will
have such access. This can be guaranteed by encrypting requests with integrity and freshness
verification mechanisms. There are pros and cons of this implementation:

3 Page table walking process is not modified and it is much faster than virtualized
environments (4 steps vs. 26 steps).

3 Node-level memory manager optimizations and page migrations are feasible (unlike
virtualized environments).

7 The operating system must be patched with a device driver to communicate with
external memory manager.

7 The centralized memory manager becomes a bottleneck if not scalable.

• Virtualizing External Memory
In this approach, each node has the illusion that it owns all the system memory, which means
the OS doesn’t need to be aware of the current state of the actual system physical memory.
Figure 2.3 depicts the virtualized system memory scheme.

As shown in the figure, a system translation unit (STU) must be added to support translation
from the node physical address to the system physical address. The STU can be implemented
as an ASIC- or FPGA-based unit that takes a physical address from the node and translates
it into the corresponding system physical address. If the address has never been accessed, an
on-demand request mechanism is initiated by the STU to request a system physical page. The

11

Figure 2.3: Implementing access control for virtualized system memory.

STU might need to do a full system page table walk to obtain the node to system translation.
Most importantly, the STU can only be updated through the system memory manager. The
advantages and disadvantages of this scheme are:

3 The OS does not need to be changed or patched.

7 In addition to walking the node’s page table at the node level, the STU will need to
walk the system level page table.

7 There is no guarantee of where the system physical pages that back up the node
physical pages exist.

Integrating Opal in Simulated Systems

As discussed above, Opal must be connected to both a MMU unit (such as SST’s Samba) and
a Processing Element (such as SST’s Ariel). To allow this, any PE core or MMU unit can have
a link that connects to their respective ports in Opal – mmuLink n and coreLink n, respectively.
For example, port coreLink 0 can be connected to port opal link 0 for Ariel. For Samba, port
mmuLink 0 can be connected to port ptw to opal0.

Opal expects a minimum of two types of requests to be received through Samba and Ariel links
– location hints and allocation requests. Hints originate from processing elements where mmap
and malloc preferences are passed to Opal, which will attempt to satisfy them during on-demand

12

Table 2.1: SST Modules Used

Module Description
CPU Ariel
MMU Samba [2]
NVM Messier [4]
Network Merlin

allocation. This is similar to libNUMA malloc hints, which are recorded and used later by the
kernel at the time of on-demand paging. Allocation requests come from the page table walker
when the accessed virtual page has never been mapped. This resembles minor page faults and on-
demand paging on the first access to virtual pages in real systems. Apart from these two requests,
Opal also accepts TLB shootdown and shootdown acknowledgment events from Samba units using
the Samba to Opal link.

Table 2.2: Opal Parameters

Parameter Description
clock frequency of Opal component
max inst maximum instructions processed in a cycle.
num nodes number of nodes
node i cores number of cores per node
node i clock frequency of each node.
node i latency latency to access Opal component per node
node i allocation policy memory allocation policy per node
node i memory local memory specific information per node (parameters shown in

Table 2.3)
shared mempools number of shared memory pools to maintain shared memory
shared mem.mempool i global memory specific information per shared memory pool (pa-

rameters shown in Table 2.3)

SST has modular designs for different hardware components. Currently Opal and the disag-
gregated memory model in SST work with specific modules, shown in Table 2.1. Opal uses Ariel
to model CPUs, Samba [2] to simulate memory management units (MMUs), Messier [4] for NVM
memory, and Merlin for networking.

Table 2.3: Memory Pool Parameters

Parameter Description
start starting address of the memory pool
size size of the memory pool in KB’s
frame size size of each frame in memory pool in KB’s (equivalent to page size)
mem tech memory pool technology (0 : DRAM,1 : NV M)

13

Opal Configuration

Opal should be configured with component-specific, node-specific and shared memory-specific
information as shown in Table 2.2. Component-specific information includes clock frequency,
maximum instructions per cycle, etc.

Node-specific information includes the number of nodes, the number of cores per node, clock
frequency, network latency to the Opal component, node memory allocation policy as explained in
section 2 and local memory information.

Shared memory-specific information includes the number of shared memory pools and the
respective memory pool parameters. Both per-node local memory and per-shared memory pool
parameters are related to memory and they are explained separately in Table 2.3. Each of these
parameters should be appended with memory related parameters shown in Table 2.2. Table 2.3
describes the memory pool specific parameters. Each memory pool, either shared or local needs a
starting address, size of the pool, frame size or page size and memory technology of the pool.

Example Opal Configuration

opalParams = {
"clock" : "2GHz",
"max_inst" : 32,
"num_nodes" : 4,
"shared_mempools" : 4,
"node0.cores" : 8,
"node0.clock" : "2GHz",
"node0.allocation_policy" : 1,
"node0.latency" : 2000, #2us
"node0.memory.start" : 0,
"node0.memory.size" : 16384, #in KB
"node0.memory.frame_size" : 4,
"node0.memory.mem_tech" : 0,
"node1.cores" : 8,
"node1.clock" : "2GHz",
"node1.allocation_policy" : 1,
"node1.latency" : 2000, #2us
"node1.memory.start" : 0,
"node1.memory.size" : 16384, #in KB
"node1.memory.frame_size" : 4,
"node1.memory.mem_tech" : 0,
"node2.cores" : 8,
"node2.clock" : "2GHz",
"node2.allocation_policy" : 1,
"node2.latency" : 2000, #2us
"node2.memory.start" : 0,

14

"node2.memory.size" : 16384, #in KB
"node2.memory.frame_size" : 4,
"node2.memory.mem_tech" : 0,
"node3.cores" : 8,
"node3.clock" : "2GHz",
"node3.allocation_policy" : 1,
"node3.latency" : 2000, #2us
"node3.memory.start" : 0,
"node3.memory.size" : 16384, #in KB
"node3.memory.frame_size" : 4,
"node3.memory.mem_tech" : 0,
"shared_mem.mempool0.start" : 001000000,
"shared_mem.mempool0.size" : 4194304, #in KB
"shared_mem.mempool0.frame_size" : 4,
"shared_mem.mempool0.mem_type" : 1,
"shared_mem.mempool1.start" : 101000000,
"shared_mem.mempool1.size" : 4194304, #in KB
"shared_mem.mempool1.frame_size" : 4,
"shared_mem.mempool1.mem_type" : 1,
"shared_mem.mempool2.start" : 201000000,
"shared_mem.mempool2.size" : 4194304, #in KB
"shared_mem.mempool2.frame_size" : 4,
"shared_mem.mempool2.mem_type" : 1,
"shared_mem.mempool3.start" : 301000000,
"shared_mem.mempool3.size" : 4194304, #in KB
"shared_mem.mempool3.frame_size" : 4,
"shared_mem.mempool3.mem_type" : 1,

}

According to the example configuration, the clock frequency of Opal is 2GHz (”clock” :
”2GHz”). In every cycle Opal can serve up to 32 requests (”max inst” : 32). The system has
4 nodes (”num nodes” : 4) with a private memory each and shared global memory is divided into 4
memory pools (”shared mempools” : 4). Each node has 8 cores (”node0.cores” : 8) and clock fre-
quency of 2GHz (”node0.clock” : ”2GHz”). Private memory size is 16MB (”node0.memory.size” :
16384) beginning at address 0 (”node0.memory.start” : 0). Memory technology of private mem-
ories in all the nodes is DRAM (”node0.memory.mem tech” : 0) with a frame size or page size
of 4KB (”node0.memory. f rame size” : 4). Network latency to communicate with Opal is 2 mi-
cro seconds (”node3.latency” : 2000). Total global or shared memory is 16GB, which is di-
vided into 4 memory pools each of 4GB (”shared mem.mempool0.size” : 4194304). Starting ad-
dress of shared memory pool 0 is 001000000 (”shared mem.mempool0.start” : 001000000) which
is equivalent to local memory(16MB) + 1, and memory pool 1 starting address is 101000000
(”shared mem.mempool1.start” : 101000000) which is equal to starting address of shared mem-
ory pool 0 + shared memory pool 0 size . Figure 2.4 depicts starting address of each memory pool
from which size of each memory pool can be deduced. Each shared memory pool is of NV M type
(”shared mem.mempool0.mem type” : 1) with 4KB frames (”shared mem.mempool0. f rame size”
: 4). The memory allocation policy used for all nodes is the alternate memory allocation policy

15

Opal
(memory allocator)

Allocate from
local memory
Allocate from
shared memory

Memory pool 0
4GB (DRAM)

(001000000-100FFFFFF)

Memory pool 1
4GB (DRAM)

(101000000-200FFFFFF)

Memory pool 2
4GB (NVM)

(201000000-300FFFFFF)

Memory pool 3
4GB (NVM)

(301000000-400FFFFFF)

Shared memory (16GB)

node 1

local memory
16MB (DRAM)

(000000-FFFFFF)

cpu/cores

mmu

node 2

local memory
16MB (DRAM)

(000000-FFFFFF)

cpu/cores

mmu

node 3

local memory
16MB (DRAM)

(000000-FFFFFF)

cpu/cores

mmu

node 0

local memory
16MB (DRAM)

(000000-FFFFFF)

cpu/cores

mmu

Figure 2.4: Example configuration

(”node0.allocation policy” : 1), which is explained in Section 2.

Opal Requests

Several request types are handled and addressed in Opal: hints from the core, page faults from
memory management unit, TLB shootdown and shootdown acknowledgement requests.

1. Hints: mmap and malloc requests are used to reserve space in the memory for future use.
These requests, are sent to Opal by the core. Opal stores the requests as hints for memory
allocation.

2. Page fault requests: Page fault requests need to be allocated memory. Allocation of memory
from local memory or shared memory is decided based upon the hints provided by the core
and the memory allocation policy. For every page fault request, Opal searches for any hints
associated with the page. If hints are available, memory is allocated according from the
specified memory region. If no hint is found, memory is allocated based on the allocation
policies. Memory allocation policies are explained in section 2.

3. TLB shootdown: Nodes in disaggregated memory systems can benefit by migrating pages
from global memory to local memory. Opal has the capability to migrate pages from local
memory to shared memory and vise versa. Whenever pages are migrated, a TLB shootdown
is initiated to invalidate the respective pages in all the cores in the nodes.

4. Shootdown acknowledgement: The MMU component, which maintains TLB units, sends a
shootdown acknowledge event to Opal after invalidating the addresses during a TLB shoot-
down event.

16

Memory Allocation Policies

Various memory allocation policies are implemented in our design and are discussed below.

1. Local memory first policy: Local memory is given more priority than shared memory. Local
memory is checked first and if there is no spare capacity then shared memory is checked. If
shared memory is spread into different memory pools, then the memory pool is chosen ran-
domly from among the available memory pools with enough space. If none of the memory
pools have spare capacity,then an error message is thrown. This memory allocation policy
can be chosen by setting the ”allocation policy” parameter of a node to 0.

2. Alternate allocation policy: Memory allocation alternates between local and shared memory
in a round-robin fashion. For example, the first request will be allocated from local memory;
the second request from shared memory; the third request from local memory; and so on.
If there are multiple shared memory pools then requests alternate between the pools – the
first request will be allocated from local memory; the second request from shared memory
pool-0; the third request from local memory; the fourth request from shared memory pool-1;
the fifth request from local memory; etc. This memory allocation policy can be chosen by
setting ”allocation policy” parameter of a node to 1.

3. Round-robin allocation policy: Similar to the alternate allocation policy, round-robin alter-
nates requests except that it includes all of the available pools in the queue rather than having
a nested policy. For example, if there are two shared memory pools then the first request will
be allocated from local memory; the second request will be allocated from shared memory
pool-0; the third request will be allocated from shared memory pool-1; the fourth from local
memory; etc. This memory allocation policy can be chosen by setting ”allocation policy”
parameter of a node to 2.

4. Proportional allocation policy: Memory is allocated proportionate to the fraction of total
memory that each memory provides. If local memory size is 2GB and shared memory size
is 16GB, then for the 1st memory allocation request, memory is allocated from local mem-
ory and then for the next 8 memory requests memory is allocated from shared memory in
sequential order. For 10th memory request, memory is allocated from local memory and so
on. This memory allocation policy can be chosen by setting ”allocation policy” parameter
of a node to 3.

Communication Between Nodes

Opal also supports communicating between nodes. Nodes can communicate with one another
by sending hints with same f ileID to Opal using Ariel ariel mmap mlm and ariel mlm malloc
calls. Opal checks if the received f ileID is registered with any memory. If it is, then the specific
page index is sent to the requesting node. If the f ileID is not registered with any memory page, then
memory is allocated based on the requested size. The allocated memory region is now registered

17

with the requester f ileID. Nodes can shared information just by writing information to the specific
pages. This reduces costly OpenMPI calls to share information between nodes.

18

Chapter 3

Evaluation

Opal was evaluated by studying the performance of a system with varying number of nodes,
amount of shared memory and memory allocation policies. Performance is calculated in terms of
instructions per cycle (IPC); IPC of all cores is averaged to get the system IPC.

Table 3.1 describes the configuration of the system used to evaluate the design. We used 2 cores
per node, a local memory of 2GB for each node and a shared memory of 16GB. Each core in a
node is configured to execute maximum of 100 million instructions. For simplicity we assume that
each node executes only one application, XSBench. To increase the size of the load, XSBench is
set to have large size with 2 threads. It should be noted that for Figures 3.1 and 3.2, N indicates the
number of nodes and SM indicates number of shared memory pools the shared memory is divided
into. For example, N4 with SM2 indicates the disaggregated memory system has 4 nodes and
shared memory is divided into 2 shared memory pools. Also, LMF indicates local memory first
memory allocation policy, ALT is alternate memory allocation policy, RR is round robin memory
allocation policy, and PROP indicates proportional memory allocation policy.

Table 3.1: System Configuration

Parameter Value
Number of cores in each node 2
maximum instruction count per core 100M
Local memory size 2GB
Shared memory size 16GB
Network Latency 20ns
Application running in each node XSBench
Application options -s large -t 2

Contention at shared memory contributes to the performance of disaggregated memory sys-
tems. The more the contention at the memory the more will be the delay in getting response from
memory. Based on this we explored different memory allocation policies proposed. They are as
follows:

1. Local memory first memory allocation policy: According to local memory first allocation
policy, memory is first allocated from private memory and if it is full, memory is allocated
from global memory. XSBench has a memory footprint of approximately 460MB when

19

 0

 0.2

 0.4

 0.6

 0.8

 1

N1 N2 N4

In
st

ru
ct

io
ns

 p
er

 C
yc

le

a. LMF policy

SM1
SM2
SM4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

N1 N2 N4

In
st

ru
ct

io
ns

 p
er

 C
yc

le

b. ALT policy

SM1
SM2
SM4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

N1 N2 N4

In
st

ru
ct

io
ns

 p
er

 C
yc

le

c. RR policy

SM1
SM2
SM4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

N1 N2 N4

In
st

ru
ct

io
ns

 p
er

 C
yc

le

d. PROP policy

SM1
SM2
SM4

Figure 3.1: Disaggregated memory system performance in instructions
per cycle for different memory allocation policies by varying number of
nodes and number of shared memory pools

executing 100 million instructions. Accordingly, all the memory can be allocated form the
local memory and because each node has its private memory the amount of time to access
data from the memory should be same as there is no contention due to other nodes. Our
results in Figure 3.1(a) show that the IPC of the system is up to 0.6 with either 1, 2 or
4 nodes as these nodes are not accessing shared memory which is based on the memory
requirement of the application and memory allocation policy.

2. Alternate memory allocation policy: Every other memory address is allocated from shared
memory. So almost half of the memory is from shared memory, that is, among 460MB of
memory 230MB is allocated from shared memory. From Figure 3.1(b) it can be seen that
the IPC of the nodes with only one node in disaggregated memory system is almost half
(0.27) compared to local memory allocation policy. This is because of half of the memory is
allocated from shared memory and delay in accessing shared memory is more.

As the number of nodes increases, the system exhibits further slowdowns due to contention
at shared memory from multiple nodes. From Figure 3.1(b) we can observed that IPC is 0.27,
0.22 and 0.13 with 1, 2 and 4 nodes in disaggregated memory systems when shared memory
is divided into only 1 shared memory. Contention at the memory pool is less when shared

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

SM
1

SM
2

SM
4

SM
1

SM
2

SM
4

SM
1

SM
2

SM
4

N1 N2 N4

In
st

ru
ct

io
ns

 p
er

 C
yc

le

LMF
ALT
RR

PROP

Figure 3.2: Comparing performance of disaggregated memory system by
varying different memory allocation policies

memory is maintained in multiple memory pools. Hence, we divided shared memory into 2
and 4 shared memory pools. For instance, from Figure 3.1(b) we can see that if 4 nodes are
present in the system, then IPC is 0.13, 0.21 and 0.25 with 1, 2 and 4 shared memory pools
respectively.

3. Round robin memory allocation policy: In this memory allocation policy, memory addresses
are allocated based on the number of memory pools, which includes the local memory pool.
So the more shared memory pools, the more total memory that is allocated from shared
memory, which degrades system performance. From Figure 3.1(c) it can be observed that
when only one node is used with a single shared memory pool, the system has an IPC of
0.27. When the number of memory pools is increased to four, the IPC drops to 0.22. As the
number of nodes increases, this effect is not present due to contention at the shared memory
from multiple nodes. For instance, from Figure 3.1 it can be observed that if 4 nodes are
used, the IPC of the system is around 0.13, when shared memory is maintained in only one
shared memory pool, and IPC is around 0.19, when shared memory is divided into 4 shared
memory pools.

4. Proportional memory allocation policy: In this policy, memory is allocated in proportion
with local and shared memory sizes. The local memory size is 2GB and the shared memory
size is 16GB, which makes the proportion at which shared memory and local memory is
allocated is 8 : 1, that is, for every 9 memory allocations, 8 memory allocations are from
shared memory and 1 memory allocation is from local memory. Accordingly, more memory

21

is allocated from shared memory in comparison with round robin and alternate memory
allocation policies. If more memory is allocated from shared memory, the performance
decreases. From figure 3.1(d) it can be clearly observed that the performance in proportional
memory allocation policy is less compared to the other memory allocation policies. For
example, with 4 nodes and with alternate memory allocation policy IPC is 0.13 and with
proportional memory allocation policy IPC is 0.07. Like other memory allocation policies,
the system IPC decreases as the number of nodes increases. IPC decreases from around 0.2,
when 1 nodes is used, to around 0.07, when 4 nodes are used in the system, according to
Figure 3.1(d). Also, when shared memory is divided into multiple shared memory pools the
IPC of the system increases from 0.07, when shared memory is maintained in one shared
memory pool, to 0.18, when shared memory is divided into 4 shared memory pools.

Figure 3.2 compares different memory allocation policies. It can be seen that the performance
of the system with the local memory allocation policy is greater when compared to the other
memory allocation policies since XSBench does not require more than the total local memory.
In a real system, the entire local memory will not be available for one application. Moreover, in
a disaggregated memory system, multiple allocation policies are used to allocated memory from
both local and shared memory. Alternate memory allocation policy uses less shared memory when
there are more available pools, which makes it perform better than RR and PROP. From Figure 3.2,
it can be observed that the IPC of the system with alternate memory allocation policy is 0.28, 0.22
with round robin memory allocation policy and 0.20 with proportional memory allocation policy
when disaggregated memory system is configured to have only one node and shared memory is
divided into 2 shared memory pools. From the same example it should also be noted that the
system with performance of proportional memory allocation policy is less compared to all the
other memory allocation policies introduced as this policy uses more shared memory compared to
other allocation policies.

22

Chapter 4

Conclusion

Opal is a centralized memory manager that can be used to investigate disaggregated memory
systems. It can be used to study the effect of page migration policies, page replacement policies,
and memory allocation on systems at scale. More generally, it can be used to study dynamic
page resizing, dynamic duplication, optimizations for TLB shootdown, acceleration for address
translations, and pre-fetching.

23

This page intentionally left blank.

References

[1] Nadav Amit. Optimizing the tlb shootdown algorithm with page access tracking. In Proc.
USENIX Ann. Conf, pages 27–39, 2017.

[2] A. Awad, S.D. Hammond, G.R. Voskuilen, and R.J. Hoekstra. Samba: A Detailed Memory
Management Unit (MMU) for the SST Simulation Framework. Technical Report SAND2017-
0002, Sandia National Laboratories, Albuquerque, NM, January 2017.

[3] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel H Loh. Avoiding
tlb shootdowns through self-invalidating tlb entries. In Parallel Architectures and Compilation
Techniques (PACT), 2017 26th International Conference on, pages 273–287. IEEE, 2017.

[4] Amro Awad, Gwendolyn Renae Voskuilen, Arun F Rodrigues, Simon David Hammond,
Robert J Hoekstra, and Clayton Hughes. Messier: A detailed nvm-based dimm model for the
sst simulation framework. Technical report, Technical Report. Sandia National Laboratories
(SNL-NM), Albuquerque, NM (United States), 2017.

[5] Marek Chrobak, Lawrence L Larmore, Nick Reingold, and Jeffery Westbrook. Page migration
algorithms using work functions. In International Symposium on Algorithms and Computation,
pages 406–415. Springer, 1993.

[6] Arun Rodrigues, Richard Murphy, Peter Kogge, and Keith Underwood. The structural simu-
lation toolkit: A tool for bridging the architectural/microarchitectural evaluation gap. Internal
Report SAND2004-6238C, 2004.

[7] Patricia J. Teller. Translation-lookaside buffer consistency. Computer, 23(6):26–36, 1990.

[8] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. Xsbench-the develop-
ment and verification of a performance abstraction for monte carlo reactor analysis. The Role
of Reactor Physics toward a Sustainable Future (PHYSOR), 2014.

25

DISTRIBUTION:

1 MS 1318 Robert J. Hoekstra, 01422
1 MS 1319 Simon D. Hammond, 01422
1 MS 0359 D. Chavez, LDRD Office, 1911
1 MS 0899 Technical Library, 9536 (electronic copy)

26

v1.40

27

28

